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5.1 The Closest Vector Problem

5.1.1 Inhomogeneous linear equations

Recall that, in our first lecture, we considered “short” non-zero solutions z to linear equa-
tions of the form

〈a, z〉 ≡ 0 mod q . (5.1)

We showed that the set of solutions

L := {z ∈ Zn : 〈a, z〉 ≡ 0 mod q}

formed a lattice. I.e., L is a subgroup of Rn, and there exists a basis b1, . . . , bn of linearly
independent vectors such that L is the set of integer linear combinations of the basis vectors,

L =
{∑

cibi : ci ∈ Z
}
.

We then generalized our discussion to consider short vectors in arbitrary lattices L ⊂ Rn—
i.e., any subgroup of Rn that is the set of integer linear combinations of some basis vectors.

It is therefore natural to consider short solutions to the inhomogeneous variant of
Eq. (5.1),

〈a, z〉 ≡ c mod q . (5.2)

For c 6≡ 0 mod q, the set of solutions to such an equation do not form a lattice. In particular
0 is not a solution (and, if 2c 6≡ 0 mod q, then the sum of two solutions will never be a
solution). Rather, they form a lattice coset. I.e., if z ∈ Zn is a solution to Eq. (5.2), then
clearly x ∈ Zn is also a solution to Eq. (5.2) if and only if the difference x− z is a solution
to the homogeneous equation Eq. (5.1). So, with L defined as before, we see that the set of
all solutions to Eq. (5.2) is the lattice coset L+ z.

It is trivial to find a solution z ∈ Zn to Eq. (5.2) (though not necessarily a short one!).
So, the problem of finding a short solution to Eq. (5.2) is equivalent to finding short vectors
in a certain lattice coset L + z, given a description of L and z. And, the problem is
equivalent to finding a lattice vector y ∈ L that is close to z. Indeed, if y ∈ L is close to
z, then y − z is a short vector in L− z, and if x ∈ L− z is a short vector, then x + z is a
close lattice vector to z.

Just like before, we will study these questions for arbitrary lattices L and vectors z—not
just those that come from linear modular equations.

5.1.2 The Closest Vector Problem

Given a target vector t ∈ Rn and a lattice L ⊂ Rn, we define

dist(L, t) := min
x∈L
‖x− t‖ .
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Definition 5.1. For any approximation factor γ = γ(n) ≥ 1, the γ-Closest Vector Problem
(γ-CVP) is defined as follows. The input is a basis for a lattice L ⊂ Rn and a target vector
t ∈ Rn. The goal is to output a lattice vector x ∈ L with ‖x− t‖ ≤ γ · dist(t,L).

As we observed above, finding a lattice vector x with ‖x− t‖ ≤ d is trivially equivalent
to finding a vector y ∈ L−t with ‖y‖ ≤ d. So, we define this alternative equivalent problem,
and we will freely switch between the two problems. (Note that a shortest vector in L − t
has length exactly dist(t,L).)

Definition 5.2. For any approximation factor γ = γ(n) ≥ 1, γ-CVP’ is defined as follows.
The input is a basis for a lattice L ⊂ Rn and a shift vector t ∈ Rn. The goal is to output a
vector s ∈ L − t with ‖s‖ ≤ γ · dist(t,L).

5.1.3 Hardness of CVP and relationship with SVP

It is straightforward to show that the exact version of CVP (i.e., 1-CVP) is NP-complete.
(Try to prove it yourself! The original proof is due to van Emde Boas [vEB81].) So, CVP’s
hardness was known long before that of SVP. Indeed, γ-CVP is now known to be NP-
complete for any γ ≤ nc/ log logn [DKRS03]. (Recall that γ-SVP is also known to be “hard”
for such parameters, but for a much weaker notion of “hardness.”)

Given this history and the definitions of the problems (in which CVP is essentially the
inhomogeneous form of SVP), it is natural to guess that one can reduce γ-SVP to γ-CVP.
In fact, a totally trivial reduction “almost works.” Since CVP is the problem of finding a
short vector in a lattice coset L− t, and L itself is a lattice coset (the zero coset), we would
like to solve SVP just by calling our CVP oracle on the “coset” L. Of course, this fails
rather spectacularly because the shortest vector in this coset is 0, and SVP of course does
not allow us to output the zero vector.

Goldreich, Micciancio, Safra, and Seifert managed to get around this annoying issue in
order to prove the following result.

Theorem 5.3 ([GMSS99]). For any γ = γ(n) ≥ 1, there is an efficient reduction from
γ-SVP to γ-CVP.

Proof. We reduce to γ-CVP’. Let (b1, . . . , bn) be the input basis for the lattice L ⊂ Rn.
Let v ∈ L be a vector of length λ1(L). The key observations from [GMSS99] are simply
that (1) v =

∑
aibi must have at least one odd coordinate, aj 6≡ 0 mod 2; and (2) the set

of vectors whose jth coordinate is odd is a lattice coset! In particular, let Lj be the lattice
spanned by “the input basis with its jth vector doubled,” (b1, . . . , 2bj , . . . , bn). I.e., Lj is
the set of all lattice vectors with even jth coordinate. Then, Lj +bj is the set of all vectors
with odd jth coordinate. In particular, there exists some j such that Lj + bj contains a
vector of length λ1(L).

So, if we call our γ-CVP’ oracle on Lj + bj for all j = 1, . . . , n, one of the results must
be a lattice vector of length at most γ ·λ1(L). All of the output vectors are non-zero, so by
returning the shortest vector that we see, we obtain a solution γ-SVP.
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5.2 Babai’s Algorithm

5.2.1 A geometric interpretation of the Gram-Schmidt orthogonalization

Recall from Lecture 2 that the Gram-Schmidt orthogonalization (b̃1, . . . , b̃n) of a basis
(b1, . . . , bn) is defined as

b̃i := π{b1,...,bi−1}⊥(bi) .

The nth Gram-Schmidt vector, b̃n, has a very nice geometric interpretation. In par-
ticular, consider the hyperplane (i.e., affine subspace) defined by all vectors x ∈ Rn (not
necessarily lattice vectors) whose last coordinate is c for some fixed c,

Hc :=
{ n−1∑

i=1

aibi + cbn

}
.

Here is an attempt at a drawing of (n− 1)-dimensional hyperplanes in IPE:

H0 = span(b1, . . . ,bn−1)

cbn

Hc = H0 + cbn

.

Notice in particular that Hc = H0 + cbn. But, since bn is typically not orthogonal to H0,
the distance between H0 and Hc to the origin will typically not be c‖bn‖. Instead, the
distance will be the length of the component of cbn that is orthogonal to H0. I.e., it will be
exactly c‖b̃n‖:
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H0 = span(b1, . . . ,bn−1)

cbn
cb̃n

Hc = H0 + cbn = H0 + cb̃n

.

The last coordinate of a lattice vector in the basis (b1, . . . , bn) is an integer (as are all the
other coordinates), so each lattice point lies in a hyperplane Hc for integer c. I.e., the lattice
can be partitioned into (n − 1)-dimensional lattice hyperplanes, {, . . . ,H−1, H0, H1, . . . , },
with adjacent hyperplanes separated by b̃n. Inside each of these hyperplanes is a copy of
the sublattice L′ generated by the first n− 1 basis vectors. But, in the ith hyperplane, the
lattice L′ is shifted by ibn. Here’s what this looks like in two dimensions:

0

b2

b1

H0

H1

H2

H−1

H−2

b̃2

.

Of course, the other Gram-Schmidt vectors can be interpreted similarly. In particular, the
sublattice L′ generated by the first n− 1 basis vectors can itself be partitioned into (n− 2)-
dimensional hyperplanes, each separated by b̃n−1. Since Hc contains a copy of L′ (shifted
by cbn), inside of Hc we will find the lattice hyperplanes of L′, also shifted by cbn.
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5.2.2 Babai’s nearest hyperplane algorithm

With this picture in mind, the idea behind Babai’s algorithm is quite simple. Given a target
vector t ∈ Rn and a lattice L ⊂ Rn with some basis (b1, . . . , bn), it seems reasonable to
look for a lattice vector that is close to t inside the closest lattice hyperplane to t. So,
Babai’s nearest hyperplane algorithm [Bab86] works by first identifying the nearest lattice
hyperplane Hc to t. For example, Babai’s algorithm would choose the hyperplane H−1 in
this example (though the closest vector to t happens to lie in H0):

H0

H1

H−1

t

.

Recall that Hc contains a coset L′ + cbn of the sublattice L′ spanned by the first n − 1
basis vectors. L′+ cbn can itself be subdivided into (n− 2)-dimensional lattice hyperplanes
(separated by b̃n−1). So, the algorithm proceeds by picking the closest (n− 2)-dimensional
lattice hyperplane to t amongst these. It then chooses an (n − 3)-dimensional lattice hy-
perplane inside of the (n− 2)-dimensional hyperplane, etc., until eventually it has found a
0-dimensional lattice hyperplane—i.e., a lattice vector.

This is the typical presentation of Babai’s algorithm, but in class, Huck Bennett sug-
gested a different view that is perhaps easier to understand (and is also easier to convert
into (pseudo)code). It most naturally solves γ-CVP’. I.e., it finds a short vector in the coset
L− t. Recall from Lecture 2 that we can rotate space so that our basis (b1, . . . , bn) is upper
triangular and looks like

‖b̃1‖ µ1,2‖b̃1‖ µ1,3‖b̃1‖ · · · µ1,n‖b̃1‖
0 ‖b̃2‖ µ2,3‖b̃2‖ · · · µ2,n‖b̃2‖
0 0 ‖b̃3‖ · · · µ3,n‖b̃3‖
...

...
...

. . .
...

0 0 0 · · · ‖b̃n‖

 . (5.3)

We can of course also write the coordinates of our shift vector in this rotated space

t =


t1
t2
...
tn

 .

In this view, Babai’s algorithm works by first finding an element in L− t whose nth coordi-
nate is minimal. I.e., it takes c := btn/‖b̃n‖e to be the integer that minimizes c‖b̃n‖−tn and
sets s := cbn − t ∈ L − t. Since the nth coordinate of any vector in L − t must differ from
−tn by an integer multiple of b̃n, this process guarantees that s has the smallest possible
nth coordinate. The algorithm then leaves the nth coordinate fixed and does the same for
the remaining coordinates. I.e., in the ith step, the algorithm takes c := bsn−i+1/‖b̃n−i+1‖e
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and updates s to s − cbn−1. In the end, we are left with a vector s in the original coset
that is relatively short.

For completeness, we now present the pseudocode of Babai’s algorithm. Notice that it
is quite simple (although perhaps a bit opaque without the above discussion).

1. Set s := −t.

2. For i = 1, . . . , n,

(a) Set c := b〈s, b̃n−i+1〉/‖b̃n−i+1‖2e.
(b) Update s to s− cbn−i+1.

3. Output s.

Before moving on, convince yourself that these are really three descriptions of the same
algorithm. In what follows, we will use the notation given by the pseudocode.

5.2.3 Analysis

We first note some basic properties of Babai’s algorithm.

Claim 5.4. After Babai’s algorithm terminates, the output vector s lies in the (hyper-)rectangle{∑
aib̃i : |ai| ≤ 1/2

}
.

In particular,

‖s‖2 ≤ 1

4

∑
i

‖b̃i‖2 ,

and this bound is tight.

Proof. Since the Gram-Schmidt vectors are orthogonal, any vector x ∈ Rn can be written
as

x =
∑ 〈b̃i,x〉
‖b̃i‖2

· b̃i .

Then, we simply recall that, in the ith step, the algorithm fixes 〈b̃n−i+1, s〉/‖b̃n−i+1‖2 so
that its magnitude is at most 1/2.

To see that the bound is tight, simply start with a point at a “corner” of the rectangle.
E.g., take t := 1

2

∑
b̃i. Notice that the output will itself be a corner of the rectangle. (Which

corner simply depends on how we choose to round 1/2.)

Note that the distance bound in Claim 5.4 suggests that we should prefer bases that
minimize

∑
‖b̃i‖2. Since det(L) =

∏
‖b̃i‖ is fixed, this suggests that we should prefer bases

that Gram-Schmidt vectors of fairly consistent length. (Recall that, if a1, . . . , an > 0, then∑
ai/
∏
a
1/n
i is minimized when ai = aj for all i, j.)

Indeed, at this point it might seem that we are done with our analysis We have shown
that Babai’s algorithm outputs fairly short vectors; our bound is tight; and we seem to have
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the right metric for judging how “good” a basis is for Babai’s algorithm—a basis is appar-
ently better if its Gram-Schmidt lengths are consistent, as measured by

∑
‖b̃i‖2/

∏
‖b̃i‖2/n.

But, remember the definitions of γ-CVP and γ-CVP’. They do not ask for a vector that
is closer/shorter than some fixed bound. Instead, they ask for a vector that is within a
factor γ of the best possible! Since t can be arbitrarily close to the lattice, the distance
bound in Claim 5.4 does not give us any bound at all on the approximation factor γ!

So, we need a bit more analysis. As it happens, just like in Lecture 2, we will find
that a nice metric of how “good” a basis is the decay rate of the Gram-Schmidt vectors,
maxi≥j ‖b̃j‖/‖b̃i‖—not how consistent the lengths of the Gram-Schmidt vectors are. First,
we will notice a nice geometric interpretation of the behavior of Babai’s algorithm.

Claim 5.5. The output vector s depends only on the coset L− t of the input.1 (I.e., if we
replace t by t + x for some lattice vector x ∈ L, the output is unchanged.)

Proof. It suffices to note that the output is unchanged when we replace t by t + bi. Let
s0, . . . , sn be the sequence of values of s set by the algorithm on input t (e.g., s0 = −t
and sn is the output of the algorithm) with corresponding sequence c1, . . . , cn, and let
s′0, . . . , s

′
n and c′1, . . . , c

′
n be this sequence on input t + bi. In particular, s0 = s′0 + bi. A

simple induction argument shows that, for j ≤ n− i, cj = c′j and therefore

sj = sj−1 − cjbn−j+1 = s′j−1 + bi − c′jbn−j+1 = s′j + bi .

For j = n− i+ 1, we have

cj =
〈b̃i, sj−1〉
‖b̃i‖2

=
〈b̃i, s′j−1 + bi〉
‖b̃i‖2

=
〈b̃i, s′j−1〉
‖b̃i‖2

+ 1 = c′j + 1 .

Therefore, sj = sj−1 − cjbi = s′j−i − c′jbi = s′j . Since the behavior of the algorithm is
entirely determined by sj , it follows that the output must be identical.

Note that, when taken together, Claims 5.4 and 5.5 completely determine the behavior
of Babai’s algorithm. In particular, they show us that Babai’s algorithm divides space into
(hyper-)rectangles according to the Gram-Schmidt vectors:

0

b2

b1

b̃2

.

1Equivalently, the rectangle from Claim 5.4 is a fundamental body of the lattice—it contains a unique
representative from each lattice coset (ignoring the boundary).
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The output of Babai’s algorithm depends only on where the input lands modulo this tiling.2

Equivalently, in terms of CVP as opposed to CVP’, Babai’s algorithm always outputs the
lattice vector at the center of the rectangle containing the target.

From this picture, we see that if dist(t,L) ≤ min ‖b̃i‖/2, then Babai’s algorithm must
always output an exact correct answer—i.e., an exact closest vector to the target or an
exact shortest vector in the coset. In particular, we can place around each lattice point a
ball of radius min ‖b̃i‖/2:

.

Since these balls are non-overlapping and entirely contained in the rectangle with the same
center, Babai’s algorithm must output an exact correct answer in this case. (Is this the
only case when the algorithm outputs an exact answer?)

From this, we see that Babai’s algorithm actually solves γ-CVP for

γ ≤

(∑
‖b̃i‖2

)1/2
min ‖b̃i‖

.

Unfortunately, there are lattices for which this quantity must be arbitrarily large for any
basis. (Consider, for example, the lattice generated by e1 and se2 for arbitrarily large
s.) Luckily, we can do better with slightly more careful analysis. In particular, just like
in Lecture 2, we will see that it is actually a good thing when the “later” Gram-Schmidt
vectors are long.

Theorem 5.6 ([Bab86]). Babai’s algorithm solves γ-CVP with

γ ≤
(

1 + max
i

∑i
j=1 ‖b̃j‖2

‖b̃i‖2
)1/2

≤
√
n+ 1 ·max

i≥j

‖b̃j‖
‖b̃i‖

.

Proof. The key observation here is that, even when dist(t,L) > ‖b̃i‖/2, Babai’s algorithm
might choose some coordinates correctly. For example, if dist(t,L) < ‖b̃n‖/2, then clearly
any closest vector to t in the lattice must lie in the nearest lattice hyperplane to t. (Since
all vectors in other lattice hyperplanes are at distance at least ‖b̃n‖/2 > dist(t,L) away
from t.) So, Babai’s algorithm must choose the correct nth coordinate in this case.

More generally, if dist(t,L) < ‖b̃j‖/2 for all j ≥ i for some i, then Babai’s algorithm
will choose the “correct” coordinate for all j ≥ i, and the output vector will actually satisfy

‖s‖2 ≤ 1

2
·

i∑
j=1

‖b̃j‖2 + dist(t,L)2 .

2 In class, we considered an alternative to Babai’s nearest hyperplane algorithm in which we simply
wrote the shift t =

∑
aibi in terms of the lattice basis (b1, . . . , bn) and returned the “fractional part”

−
∑

(ai − baie)bi. We observed that this algorithm can be seen as dividing space into parallelepipeds, not
necessarily rectangles. Indeed, Babai studied this algorithm as well in his original paper [Bab86].
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If dist(t,L) < ‖b̃i‖/2 for all i, then we know that the output will be correct, so we may
assume that there is an i ∈ {1, . . . , n} such that dist(t,L) ≥ ‖b̃i‖/2, and we may take i to
be maximal satisfying this property. Then,

‖s‖2 ≤ 1

2
·

i∑
j=1

‖b̃j‖2 + dist(t,L)2 ≤ dist(t,L)2

‖b̃i‖2
·

i∑
j=1

‖b̃j‖2 + dist(t,L)2 ,

as claimed.

5.2.4 Plugging in a good basis

Do we happen to know any types of lattice bases with bounded “decay rate” maxi≥j ‖b̃j‖/‖b̃i‖?
Yes!

Corollary 5.7 ([Bab86]). For any δ ∈ (1/4, 1], Babai’s algorithm with a δ-LLL basis solves
γ-CVP for γ ≤

√
n(δ − 1/4)−n/2. In particular, there is an efficient algorithm that solves

γ-CVP for γ = 2O(n).

Proof. Simply recall from Lecture 2 that a δ-LLL basis (b1, . . . , bn) satisfies ‖b̃i+1‖2 ≥
(δ − 1/4) · ‖b̃i‖2 for all i.

Just like in the SVP case, slightly better approximation factors are known using BKZ
bases (which generalize LLL bases). In particular, for any constant C > 0, there is an
efficient algorithm that solves 2Cn log logn/ logn-CVP.
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