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These are supplemental notes in which I provide some examples of security proofs via a reduc-
tion. They should (hopefully) be helpful in showing you how to do the homework and in filling in
some of the details that I do not have the time to cover in lectures.

The basic idea of a proof by reduction is to show that, if we can solve computational problem
A efficiently, then we can solve computational problem B efficiently. We prove this by showing
how to construct an algorithm that solves problem B efficiently, provided that it is given access
to a subroutine that solves problem A. Such an algorithm is called a reduction from B to A. As
cryptographers, we typically turn this on its head and take the contrapositive. In particular, if
we have a reduction from B to A, and we believe that B is hard (i.e., that B cannot be solved
efficiently), then we must also believe that A is hard.

(Note that it is very easy to get confused about directions here. I.e., it is very easy to accidentally
show a reduction from A to B, when you meant to show a reduction from B to A. It is always
good to step back and ask what you’re trying to prove. E.g., if you’re trying to prove that A is
hard, then you want to show that an efficient algorithm for A would imply something absurd: e.g.,
an efficient algorithm for B.)

Such proofs are the bread and butter of cryptography, and we use them a lot. Reductions in
cryptography also tend to be quite subtle for a number of reasons. Perhaps most importantly, in
cryptography the problems (A and B) that we study are almost always average-case problems,
and we are usually interested in whether there exist efficient algorithms that solve A and B with
non-negligible probability or with non-negligible advantage.

E.g., consider the example of one-way functions. Suppose that we have some construction of
a one-way function g, and we would like to show that it is secure (i.e., hard to invert) under the
assumption that some other one-way function f is secure. To do this, we first take the contraposi-
tive: we show that if g were insecure, then f would necessarily be insecure. To do so, we want to
show a reduction from the problem of breaking f to the problem of breaking g. In other words, we
assume that we have access to a PPT adversary A that inverts g with non-negligible probability.
That is,

Pr
x∼{0,1}n

[x′ ← A(1n, g(x)) : g(x) = g(x′)] ≥ ε(n) , (1)

for some non-negligible ε(n). We then show that we could use such an A to construct a new
adversary A′ that inverts f with non-negligible probability, i.e., such that

Pr
y∼{0,1}m

[y′ ← A′(1m, f(y)) : f(y) = f(y′)] ≥ ε′(m) ,

for some non-negligible ε′. It is crucial to make sure that your proof only uses Eq. (1) and does not
assume anything else about A. For example, you may not assume that A always finds an inverse
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to g(x) for any input x, or that A has non-negligible probability of inverting g(x) when x ∼ D is
sampled from some other distribution D, as opposed to the uniform distribution x ∼ {0, 1}n. This
is crucial, as some of the below examples illustrate.

It is very often the case that a statement in cryptography looks quite obvious but is quite
difficult to prove via reduction. This simply comes with the territory. Indeed, it is also very often
the case that a statement in cryptography looks quite obvious but is actually false! Even experts
get this stuff wrong all the time! This is why our proofs must be so careful.

Below, I do some examples. For some, I will include a very pedantic version and a less pedantic
version of the same proof—so that if you’re confused by the less pedantic version, you can check
the details in the pedantic version. (The less pedantic proofs are what we will typically use—and
what I expect from you in your homework—but it’s important that we are always sure that such
proofs can be trivially expanded to a fully formal pedantic proof without any subtle issues arising.)

Claim 1. Let g(x1|x2) := f1(x1)|f2(x2) (where here we use | to represent string concatenation and
x1 and x2 have the same length), where f1 and f2 are both efficiently computable functions. Then,
g is a secure one-way function if either f1 is a secure one-way function or f2 is a secure one-way
function.

Proof.

Standard proof. We assume for contradiction that g is not secure, i.e., that there exists a PPT
adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, g(x)) : g(x) = g(x′)] ≥ ε(n) ,

for some non-negligible ε(n). Then, we construct two PPT adversaries B1 and B2, one that breaks
f1 and one that breaks f2, contradicting the assumption that at least one of them is secure.

Our adversary B1 takes as input y1 := f1(x1), where x1 ∼ {0, 1}m; samples x2 ∼ {0, 1}m; sets
y2 := f2(x2); runs x

′
1|x′2 ← A(12m, y1|y2); and outputs x′1. Clearly, B1 runs in polynomial time, and

the input to A in the reduction is identical to its input in the security game against g. Therefore,

Pr[f1(x
′
1) = f1(x1)] ≥ Pr[g(x′1|x′2) = g(x1|x2)] ≥ ε(2m) ,

which is non-negligible. This implies that f1 cannot be a one-way function if g is not a one-way
function.

A similar proof shows that f2 cannot be a one-way function if g is not a one-way function, and
we are done.

Pedantic version of the proof. We prove this via reduction. Specifically, we assume that there
exists a PPT adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, g(x)) : g(x) = g(x′)] ≥ ε(n) ,

for some non-negligible ε(n). Then, we construct two PPT adversaries B1 and B2, one that breaks
f1 with non-negligible probability and one that breaks f2 with non-negligible probability. This
would contradict the assumption that either f1 or f2 is one way, as needed.
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We construct B1 as follows. B1 takes as input 1m and y1 := f1(x1), where x1 ∼ {0, 1}m. (I.e.,
B1 is playing the one-way function game against f1. To be clear, x1 is not part of the input, and
is unknown to B1.) It then samples x2 ∼ {0, 1}m itself and sets y2 := f2(x2). Finally, it calls A on
input 12m and y1|y2, receiving as output x′1|x′2, and it outputs x′1.

To see that this reduction works, first notice that it runs in polynomial time, since it simply
samples m uniformly random bits; computes f2, which is efficiently computable by assumption;
and concatenates some strings together. Next, we claim that

Pr
x1∼{0,1}m

[x′1 ← B1(1m, f1(x1)) : f1(x
′
1) = f1(x1)] ≥ ε(2m) ,

which is non-negligible. To see this, first, notice that if x1 ∼ {0, 1}m and y1 := f1(x1), then the
input to A is distributed exactly as g(x) where x ∼ {0, 1}2m. Therefore, by assumption

Pr[g(x′1|x′2) = g(x1|x2)] ≥ ε(2m) .

Finally, we notice that whenever g(x′1|x′2) = g(x1|x2), we must have f1(x1) = f1(x
′
1). Therefore,

B1 inverts f1 (with uniformly random input) with non-negligible probability, contradicting the
assumption that f1 is a one-way function.

The construction of B2 is identical, except with the roles of f1 and f2 reversed, and the proof
that it works is identical. (Even in very pedantic proofs, we do not waste ink by writing the same
argument twice.)

Claim 2. If f is a one-way function, then g(x) := f(x[1,
√
|x|]) is a one-way function. I.e., g

depends only on the first
√
n bits of its input, where n := |x| is the length of the input to g.

Proof.

Standard proof. We assume for contradiction that g is not secure, i.e., that there exists a PPT
adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, g(x)) : g(x) = g(x′)] ≥ ε(n) ,

for some non-negligible ε(n). Then, we construct a PPT adversary B that breaks f .
Our adversary B takes as input 1m and y := f(x), where x ∼ {0, 1}m; sets x′ ← A(1m2

, y); and
outputs x′[1,

√
|x′|]. Clearly, B runs in polynomial time, and the input to A in the reduction is

identical to its input in the security game against g. Furthermore, we have f(x′[1,
√
|x′|]) = y if and

only if g(x′) = y. Therefore, Pr[f(x′[1,
√
|x′|]) = y] ≥ ε(m2), which is non-negligible, contradicting

the assumption that f is a one-way function.

Pedantic version of the proof. We prove this via reduction. Specifically, we assume that there
exists a PPT adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, g(x)) : g(x) = g(x′)] ≥ ε(n) ,

for some non-negligible ε(n) and show that we can use this to construct a PPT adversary B that
breaks f . Since f is secure by assumption, this is a contradiction.
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We construct B as follows. B takes as input 1m and y := f(x), where x ∼ {0, 1}m. It simply
calls A on input 1m

2
and y, receiving as output x′ ∈ {0, 1}ℓ. Finally, it outputs x′[1,

√
ℓ] (i.e., it

outputs the first
√
ℓ bits of x′—notice that it is not necessarily the case that ℓ = m2).

To see that this reduction works, first notice that it runs in polynomial time. Next, we claim
that

Pr
x∼{0,1}m

[x′ ← B(1m, f(x)) : f(x′[1,
√
ℓ]) = f(x)] ≥ ε(m2) ,

which is non-negligible.1 To see this, first, notice that if x ∼ {0, 1}m and y := f(x), then the input
to A is distributed exactly as g(x∗) where x∗ := x|x′′ with x′′ ∼ {0, 1}m2−m. I.e., x∗ is distributed
identically to a uniformly random m2-bit string. Therefore, by assumption

Pr[g(x′) = g(x∗)] ≥ ε(m2) .

Notice that if ε is a non-negligible function, then ε′(m) := ε(m2) is also a non-negligible function
(ignoring the annoying issues discussed in the footnote). Finally, we notice that whenever g(x′) =
g(x∗), we must have f(x) = f(x′[1,

√
ℓ]) by definition. Therefore, B inverts f (with uniformly

random input) with non-negligible probability, contradicting the assumption that f is a one-way
function.

Claim 3. Let h be a one-way function. Then,

ε(n) := Pr
x∼{0,1}n

[h(x) = 0]

is negligible.

Proof. Consider the adversary A that on input (1n, y) simply samples a uniformly random string
x′ ∼ {0, 1}n and returns x′ (without bothering to look at y). Notice that

ε′(n) := Pr
x∼{0,1}n

[x′ ← A(1n, h(x)) : h(x) = h(x′)] = Pr
x,x′∼{0,1}n

[h(x) = h(x′)] ≥ Pr
x∼{0,1}n

[h(x) = 0]2 = ε(n)2 .

By assumption, this probability is negligible. Finally, we recall from Homework 1 that if ε′(n) is
negligible then so is ε(n) = (ε′(n))1/2.

The following example highlights the fact that a one-way function is only hard to invert on
uniformly random input, not necessarily on all input.

Claim 4. If one-way functions exist, then there exists a one-way function f such that g(x) :=
f(0|x||x) is not a one-way function.

Proof.
1There’s actually an annoying subtlety here that we are ignoring, even in this super pedantic version of the proof.

The issue has to do with the fact that we did not really specify how the function g behaves when its input has
length that is not a perfect square. E.g., suppose we specify that g depends on the first ⌊

√
n⌋ bits in this case. And,

suppose that our adversary A is super sneaky, in the sense that it only breaks g when its input is (1n, y) for some n
that is not a perfect square. Then, the above proof would not work, since the above proof only calls the adversary
with security parameter equal to a perfect square. (We do formally need to worry about such things. Adversaries
are adversarial!) Indeed, it is not necessarily the case that ε′(m) := ε(m2) is non-negligible if ε(n) is non-negligible,
because of annoying functions like

ε(n) :=

{
2−n n is a perfect square

1/n otherwise.

We ignore issues like this unless they are central to the problem that we are solving, knowing that we could resolve
them if we had to. (In this case, one can fix this, e.g., by choosing a uniformly random integer m′ between m2 and

(m+ 1)2 and calling A on input (1m
′
, y).
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Pedantic version of the proof. Let h be any one-way function (which exists by assumption).
Then, define

f(x1|x2) :=

{
0 x1 = 0|x1|

h(x1|x2) otherwise,

where |x1| = |x2|. Notice that g(x) := f(0|x||x) is clearly not a one-way function, since g(x) = 0
for all x. In particular, an adversary can invert g by literally outputting any bit string at all.

So, it remains to show that f is in fact a one-way function (assuming that h is). First, notice
that f is in fact efficiently computable. Now, suppose for the sake of contradiction that f is not
one way, i.e., that there exists a PPT adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, f(x)) : f(x) = f(x′)] ≥ ε(n) ,

for some non-negligible ε(n). We claim that

Pr
x∼{0,1}n

[x′ ← A(1n, h(x)) : h(x) = h(x′)] ≥ ε(n)− ε′(n)

for some negligible ε′. (Recall that we proved in Homework 1 that ε(n)− ε′(n) is non-negligible if
ε is non-negligible and ε′ is negligible.) In other words, we claim that A can itself be viewed as an
adversary against h with non-negligible advantage. This would contradict the assumption that h
is a one-way function. So, we must have that f is a one-way function, as needed.

To see this, let Ex be the event that the first |x|/2 bits of x are all equal to zero and ¬Ex be
the complement of this event. Notice that

Pr
x∼{0,1}n

[x′ ← A(1n, h(x)) : h(x) = h(x′)] ≥ Pr
x∼{0,1}n

[x′ ← A(1n, h(x)) : h(x) = h(x′) and ¬Ex and h(x) ̸= 0]

= Pr
x∼{0,1}n

[x′ ← A(1n, f(x)) : f(x) = f(x′) and ¬Ex and h(x) ̸= 0]

≥ Pr
x∼{0,1}n

[x′ ← A(1n, f(x)) : f(x) = f(x′)]− Pr[Ex]− Pr[h(x) = 0] ,

where in the last step we have used the union bound, which in particular says that Pr[A and B and C] ≥
Pr[A]− Pr[¬B]− Pr[¬C].

It remains to show that Pr[Ex] and Pr[h(x)] are both negligible. Indeed, we trivially have
Pr[Ex] = 2−n/2, which is clearly negligible. The fact that Pr[h(x) = 0] is negligible is exactly
Claim 3.

Standard proof. Here, we use a slightly different construction that makes the proof more elegant
(and avoids needing to use Claim 3). Let h be any one-way function, and let

f(x1|x2) :=

{
0 x1 = 0|x1|

1|h(x1|x2) otherwise,

where |x1| = |x2|. (Notice that we have appended one to the output when x1 ̸= 0|x1|, so that now
we simply cannot have f(x1|x2) = 0 unless x1 = 0|x1|. This is much more convenient. Incidentally,
this simple technique is sometimes called “range separation,” since we are explicitly making sure
that the range of f in the two cases is distinct.)
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Notice that g(x) := f(0|x||x) is clearly not a one-way function, since g(x) = 0 for all x. (Indeed,
any adversary that outputs any bit string x′ ∈ {0, 1}∗ at all will break this g, since g(x) = g(x′) for
all x, x′ ∈ {0, 1}∗, which is rather silly :P.) So, we only need to prove that f is a one-way function
(assuming that h is a one-way function).

Suppose for the sake of contradiction that f is not one way, i.e., that there exists a PPT
adversary A such that

Pr
x∼{0,1}n

[x′ ← A(1n, f(x)) : f(x) = f(x′)] ≥ ε(n) ,

for some non-negligible ε(n).
We construct an adversaryA′ for h as follows. A′ takes as input 1n and y := h(x) for x ∼ {0, 1}n.

It simply sets x′ ← A(1n, 1|y) and outputs x′.
We claim that

Pr
x∼{0,1}n

[x′ ← A′(1n, h(x)) : h(x) = h(x′)] ≥ ε(n)− 2−n/2 ,

which is non-negligible. This would contradict our assumption that h is one-way, as needed.
To see this, notice that

Pr
x∼{0,1}n

[x′ ← A′(1n, h(x)) : h(x) = h(x′)] ≥ Pr
x∼{0,1}n

[x′ ← A(1n, f(x)) : f(x) = f(x′) and x[1, n/2] ̸= 0n/2]

≥ ε(n)− 2−n/2 ,

as needed, where we have used the fact that h(x) = h(x′) whenever f(x) = f(x′) and x[1, n/2] ̸=
0n/2.
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