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Abstract

Computational problems on lattices have found a remarkable number of applications in com-
puter science. In particular, over the past twenty years, many strong cryptographic primitives
have been constructed with their security based on the (worst-case) hardness of various lattice
problems.

Due to their importance, there has been much work towards understanding the relationship
between these problems. For the parameters that typically interest us, the fastest known algo-
rithms for lattice problems run in time that is exponential in the dimension of the lattice. There-
fore, we are typically interested in reductions that preserve this dimension. (We actually relax this
notion slightly and consider a reduction to be “dimension-preserving” if it increases the dimen-
sion by at most an additive constant.)

We summarize many of the known results in this area.
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From left to right, we have the exact lattice search problems (and close relatives), their approximate
variants, and their decisional variants (and close relatives). All arrows represent efficient dimension-
preserving reductions. Dashed arrows represent reductions that change the approximation factor. We
omit the trivial reductions from decision problems to the corresponding search problems and from
approximation problems to the corresponding exact problems, and we have left out many constants.
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All reductions between BDD, uSVP and GapSVP are originally due to [LM09], though [BSW16]
improved the constant in the reduction from BDD to uSVP. The reductions from uSVP to BDD and
from uSVP to GapSVP only work for polynomially bounded approximation factors γ. The equiva-
lence of CVP and SIVP is due to [Mic08].

The reduction from (nγ)-GapSVP to γ-SIVP is an immediate consequence of Banaszczyk’s fa-
mous transference theorem [Ban93] (which says that 1 ≤ λ1(L)λn(L∗) ≤ O(n)).

The reduction from (
√

nγ)-SIVP to γ-SVP is known in folklore [Mic15], but I don’t know of any
published source. So, I’ve include a short proof in Section 4.

Similarly, I know of no source for the reduction from (
√

nγ2)-CVP to γ-SVP (though many works
use similar ideas, such as [Kan87, LLS90, MG02, DRS14]). So, I’ve included a proof in Section 5. The
reduction relies crucially on the reduction from BDD to GapSVP in [LM09], and it likely would have
appeared in one of [Kan87, LLS90, MG02] if the authors had known about this reduction from BDD
to GapSVP when they wrote their respective papers.

2 Some open problems

A lot remains open in this area. Indeed, in nearly all cases, we do not know whether the approxima-
tion factors that we obtain are optimal. I will briefly discuss two interesting open questions below,
with the disclaimer that this is far from a complete list.

First, does a dimension-preserving reduction exist from γ-SVP to γ′-SIVP with γ/γ′ ≤ poly(n)
for all γ = poly(n) [Mic15]? Such a reduction would show that the three most important approximate
lattice search problems are equivalent up to polynomial factors. Note that SIVP is equivalent to CVP
in its exact version. Perhaps this reduction can be extended further?

Second, what is the relationship between the search and decision problems under dimension-
preserving reductions? Of course, there are trivial decision-to-search reductions, but what about
reductions in the other direction? In fact, it is easy to see that in their exact versions, search and deci-
sion lattice problems are equivalent (i.e., SVP reduces to GapSVP and CVP reduces to GapCVP). And,
nearly all of our techniques for solving lattice decision problems actually work by solving the corre-
sponding search problem. So, one might hope that the problems are equivalent. Alternatively, one
might hope to conclusively separate the problems, or at least find techniques for decision problems
that seem “inherently decisional.” Recently, [S15] showed that there exist search-to-decision reduc-
tions for approximation factors slightly greater than one that lose quite a bit in the approximation
factor, but this is still far from a complete answer.

3 Definitions

A lattice L ⊂ Qn is the set of all integer linear combinations of linearly independent basis vectors
b1, . . . , bn ∈ Qn. B = (b1, . . . , bn) is called a basis for the lattice, and it is not unique.

We write λ1(L) for the length of a shortest non-zero vector in the lattice L ⊂ Qn. Similarly, λ2(L)
is the length of the shortest vector that is linearly independent from a vector of length λ1(L), and
λn(L) is the smallest radius r such that there exist n linearly independent lattice vectors of length r.
For a shift vector t ∈ Qn, parameter s > 0, lattice L ⊂ Qn, the discrete Gaussian distribution DL−t,s
is the probability distribution over the shifted lattice L − t that assigns probability proportional to
e−π‖x‖2/s2

to each x ∈ L− t.

3.1 Exact problems (and close relatives)

Definition. SVP (the Shortest Vector Problem) is the search problem defined as follows: The input is a basis
B for a lattice L ⊂ Qn. The goal is to output a lattice vector x with ‖x‖ = λ1(L).
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Definition. CVP (the Closest Vector Problem) is the search problem defined as follows: The input is a basis
B for a lattice L ⊂ Qn and a target vector t ∈ Qn. The goal is to output a lattice vector x with ‖x− t‖ =
dist(t,L).

Definition. SIVP (the Shortest Independent Vectors Problem) is the search problem defined as follows: The
input is a basis B for a lattice L ⊂ Qn. The goal is to output n linearly independent lattice vectors of length at
most λn(L).

Definition. DGS (the Discrete Gaussian Sampling problem) is the sampling problem defined as follows: The
input is a basis B for a lattice L ⊂ Qn, a shift t ∈ Qn, and a parameter s > 0. The goal is to output a vector
whose distribution is statistically close to DL−t,s.

Definition. Centered DGS is the sampling defined as follows: The input is a basis B for a lattice L ⊂ Qn and
a parameter s > 0. The goal is to output a vector whose distribution is statistically close to DL,s.

3.2 Approximation problems

Definition. For any parameter γ ≥ 1, γ-SVP (the Shortest Vector Problem) is the search problem defined as
follows: The input is a basis B for a lattice L ⊂ Qn. The goal is to output a lattice vector x with 0 < ‖x‖ ≤
γ · λ1(L).

Definition. For any parameter γ ≥ 1, γ-CVP (the Closest Vector Problem) is the search problem defined as
follows: The input is a basis B for a lattice L ⊂ Qn and a target vector t ∈ Qn. The goal is to output a lattice
vector x with ‖x− t‖ ≤ γ · dist(t,L).

Definition. For any parameter γ ≥ 1, γ-SIVP (the Shortest Independent Vectors Problem) is the search
problem defined as follows: The input is a basis B for a lattice L ⊂ Qn. The goal is to output n linearly
independent lattice vectors of length at most γ · λn(L).

Definition. For any function σ that maps lattices to positive real numbers, DGSs≥σ(L) (the Discrete Gaussian
Sampling problem) is the sampling problem defined as follows: The input is a basis B for a lattice L ⊂ Qn, a
shift t ∈ Qn, and a parameter s ≥ σ(L). The goal is to output a vector whose distribution is statistically close
to DL−t,s.

3.3 Decision problems (and close relatives)

Definition. For any parameter γ ≥ 1, γ-GapSVP (the Shortest Vector Problem) is the decision problem
defined as follows: The input is a basis B for a lattice L ⊂ Qn and a length d > 0. It is a YES instance if
λ1(L) ≤ d and a NO instance if λ1(L) > γ · d.

Definition. For any parameter γ ≥ 1, γ-GapCVP (the Closest Vector Problem) is the decision problem defined
as follows: The input is a basis B for a lattice L ⊂ Qn and a target vector t ∈ Qn. It is a YES instance if
dist(t,L) ≤ d and a NO instance if dist(t,L) > γ · d.

Definition. For any parameter α > 0, BDDα (the Bounded Distance Decoding Problem) is the search problem
defined as follows: The input is a basis B for a lattice L ⊂ Qn and a target vector t ∈ Qn with dist(t,L) <
α · λ1(L). The goal is to output a lattice vector x with ‖x− t‖ = dist(t,L).

Definition. For any parameter γ ≥ 1, γ-uSVP (the unique Shortest Vector Problem) is the search problem
defined as follows: The input is a basis B for a lattice L ⊂ Qn with λ2(L) ≥ γ · λ1(L). The goal is to output
a lattice vector x with ‖x‖ = λ1(L).
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4
√

nγ-SIVP to γ-SVP

Given a basis, B = (b1, . . . , bn), we define its Gram-Schmidt orthogonalization (b̃1, . . . , b̃n) by

b̃i = π{b1,...,bi−1}⊥(bi) ,

and the Gram-Schmidt coefficients µi,j by

µi,j =
〈bi, b̃j〉
‖b̃j‖2 .

Here, πA is the orthogonal projection on the subspace A and {b1, . . . , bi−1}⊥ denotes the subspace
orthogonal to b1, . . . , bi−1.

A basis B = (b1, . . . , bn) of L is a γ-Hermite-Korkin-Zolotarev (γ-HKZ) basis if

1. ‖b1‖ ≤ γ · λ1(L);

2. the Gram-Schmidt coefficients of B satisfy |µi,j| ≤ 1
2 for all j < i; and

3. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is a γ-HKZ basis of π{b1}⊥(L).

In particular, note that b̃i is a γ-approximate shortest non-zero vector in the projected lattice π{b1,...,bi−1}⊥(L).
Observe that a γ-SVP oracle can be used to compute a γ-HKZ basis (in a dimension-preserving

way). (Just find a γ-approximate shortest vector, project onto the space orthogonal to that vector, and
repeat.) The result then follows from the following basic lemma.

Lemma 4.1. If B = (b1, . . . , bn) is a γ-HKZ basis of L, then ‖bi‖ ≤
√

n + 3 · γ · λn(L)/2 for all i.

Proof. By Item 2 above, we have

‖bi‖2 ≤ ‖b̃i‖2 +
1
4
·∑

j<i
‖b̃j‖2 ≤ n + 3

4
·max

j
‖b̃j‖2 .

It therefore suffices to prove that ‖b̃j‖ ≤ γ · λn(L) for all j.
Suppose λn(L) < ‖b̃j‖/γ for some j, and let v1, . . . , vj ∈ L be linearly independent lattice

vectors with ‖vi‖ < ‖b̃j‖/γ. Since they are linearly independent, there exists some i such that
π{b1,...,bj−1}⊥(vi) 6= 0. Therefore, λ1(π{b1,...,bj−1}⊥(L)) ≤ ‖vi‖ < ‖b̃j‖/γ. This contradicts the assump-
tion that B is a γ-HKZ basis.

The result follows.

Corollary 4.2. For any γ = γ(n) ≥ 1, there is an efficient dimension-preserving reduction from γ′-SIVP to
γ-SVP where

γ′ :=
√

n + 3
2

· γ .

5
√

nγ2-CVP to γ-SVP

We will need two results. The first is the reduction of [LM09] from BDD to uSVP. The second is
Babai’s famous nearest-plane algorithm. (The reduction also uses a γ-HKZ basis, which is defined in
the previous section.)

Theorem 5.1 ([LM09]). For any γ = γ(n) ≥ 1, there is an efficient dimension-preserving reduction from
1/(2γ)-BDD to γ-uSVP.
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Theorem 5.2 (Babai’s algorithm [Bab86]). There is an efficient algorithm that takes as input a lattice basis
(b1, . . . , bd) ∈ Qn and a target vector t ∈ span(b1, . . . , bd) and outputs a lattice vector y ∈ L(b1, . . . , bd)

with ‖y− t‖2 ≤ 1
4 ·∑i ‖b̃i‖2.

The idea behind the reduction is to “split” the CVP instance into a “GDD part” and a “BDD part.”
(Guaranteed Distance Decoding, or GDD, asks us to find a lattice point that is some fixed distance
away from the target vector, regardless of how close the target is to the lattice. E.g., Theorem 5.2

gives a solution to GDD with distance 1
2 ·

√
∑i ‖b̃i‖2.) To do this, we use our SVP oracle to find a

good basis B := (b1, . . . , bn), and we guess an index k such that ‖b̃i‖ . dist(t,L) for i ≤ k and
‖b̃k+1‖ & dist(t,L). We then use our SVP oracle and Theorem 5.1 to solve the BDD instance given by
π(b1,...,bk)⊥

(t) and π(b1,...,bk)⊥
(L), and we use our good basis and Babai’s algorithm to solve a related

GDD instance on L(b1, . . . , bk). Combining the results appropriately gives an approximate closest
vector to t.

Theorem 5.3. For any γ = γ(n) ≥ 1, there is a dimension-preserving reduction from (
√

nγ2)-CVP to
γ-SVP.

Proof. On input a lattice L ⊂ Qn and a target t ∈ Qn, the reduction first uses its SVP oracle to
compute a γ-HKZ basis of L, B = (b1, . . . , bn). Let πi := π{b1,...,bi}⊥ represent projection onto the
subspace orthogonal to the first i basis vectors, π̂i := πspan(b1,...,bi), and Li := πi(L). For i = 0, . . . , n,
the reductions runs the procedure from Theorem 5.1 on input πi(t) and Li, receiving as output wi =

∑n
j=i+1 ajπi(bj). Let xi := ∑n

j=i+1 ajbj be the “lift” of wi into L. The reduction then uses Babai’s
algorithm on input (b1, . . . , bi) and π̂i(t − xi), receiving as output zi ∈ L. Finally, it returns the
closest lattice vector amongst the yi := zi + xi.

The running time is clear. By embedding all relevant lattices in Qn, we may assume without loss
of generality that γ = γ(i) = γ(n) for all 1 ≤ i ≤ n. Let 0 ≤ k ≤ n be maximal such that ‖b̃i‖ ≤
2γ2 · dist(t,L) for all 0 < i ≤ k. If k = n, then the result follows immediately from Theorem 5.2, since
yn = Babai(B, t). So, we assume k < n.

Note that 2γ2 dist(t,L) < ‖b̃k+1‖ ≤ γλ1(Lk), so that dist(πk(t),Lk) ≤ dist(t,L) < λ1(Lk)/(2γ).
I.e., (πk(t),Lk) is a valid 1/(2γ)-BDD instance. Then, by Theorem 5.1, wk ∈ Lk will be the unique
closest vector in Lk to πk(t). In particular,

‖wk − πk(t)‖ = dist(πk(t),Lk) ≤ dist(t,L) .

And, by Theorem 5.2,

‖zk − π̂i(t− xk)‖2 ≤ 1
4
·

k

∑
j=1
‖bj‖2 ≤ (n− 1) · γ4 · dist(t,L)2 .

Therefore, we have

‖yk − t‖2 = ‖πk(yk − t)‖2 + ‖π̂k(yk − t)‖2

= ‖wk − πk(t)‖2 + ‖zk − π̂k(t− xk)‖2

≤ dist(t,L)2 + (n− 1) · γ4 · dist(t,L)2

≤ nγ4 dist(t,L)2 ,

as needed.
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